Code: 20EC3501

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

DIGITAL COMMUNICATIONS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks		
		UNIT-I					
1	a)	Explain Differential Pulse Code Modulation	L2	CO1	7 M		
		System with neat diagram.					
	b)	Draw line coding wave forms for the	L3	CO1	7 M		
		101001001 bit pattern.					
	OR						
2	a)	Explain Delta modulation with block	L2	CO1	7 M		
		diagram and discuss different types of noise					
		effects in Delta modulation.					
	b)	Discuss Correlative coding with neat	L2	CO1	7 M		
		diagram.					
UNIT-II							
3	a)	Explain Matched Filter receiver with neat	L2	CO2	7 M		
		diagram.					
	b)	Interpret generation and detection of QPSK	L3	CO2	7 M		
		and draw the constellation diagram.					

		OR			
4	a)	Analyze the working principal of generation	L4	CO2	7 M
		and Coherent detection of BFSK.			
	b)	Illustrate the comparisons of digital	L3	CO2	7 M
		modulation schemes (FSK, PSK and DPSK)			
		with respect to bandwidth requirements,			
		power requirements, immunity to channel			
		impairments and equipment complexity.			
		UNIT-III			
5	a)	Compare Slow frequency Hopping, and fast	L4	CO2	7 M
	(a)	Frequency Hopping.	LT		/ 141
	b)	Explain the properties of Pseudo random	L2	CO2	7 M
		Noise sequence.	12		7 141
		OR			
6	a)	Describe Direct Sequence Spread Spectrum	L2	CO2	7 M
		with necessary diagrams.			
	b)	Explain advantages and applications of	L3	CO2	7 M
		Spread spectrum Communication system.			
	ı	UNIT-IV		Т	
7	a)	A Transmitter has an alphabet of four letters	L3	CO3	7 M
		[x1 x2 x3 x4] and the receiver has an alphabet			
		of three letters [y1 y2 y3]. Then it probability			
		matrix is			
		$P(X,Y) = \begin{bmatrix} X_1 & Y_1 & Y_2 & Y_3 \\ X_1 & 0.3 & 0.05 & 0 \\ X_2 & 0 & 0.25 & 0 \\ X_3 & 0 & 0.15 & 0.05 \\ X_4 & 0 & 0.05 & 0.15 \end{bmatrix}$			
		Calculate all the entropies			

	b)	Derive an expression for capacity of a	L2	CO3	7 M
		Gaussian Channel.			
		OR			
8	a)	A Discrete Information source has five	L3	CO3	7 M
		symbols[x1,x2,x3,x4, and x5] with			
		probabilities [0.4, 0.19, 0.16, 0.10 and 0.15]			
		respectively. Construct Shannon-Fano code			
		for the source and calculate code efficiency			
		η			
	b)	Prove $I(X Y) = H(X)-H(X/Y)$	L3	CO3	7 M
	l	UNIT-V	<u> </u>		
9	a)	The generation matrix for a (7,4) block code			
		is given below:			
		$G = \left[\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{array} \right]$			
		i. Find the code vector for message vector			
		(1001)	L3	CO4	7 M
		ii. How many errors can be detected and corrected			
		iii. If the third bit of code vector suffers an			
		error in transmission then explain how			
		the syndrome helps in correcting a single			
		error			
	b)	A (15, 5) linear cyclic code has a generator			
		polynomial $G(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$.	L3 CO	CO4	7 M
		(i) Draw the block diagram of encoder and			, 141
		syndrome calculator for this code.			

		(ii) Find the code polynomial for the message polynomial $D(x) = 1+x^2+x^4$.			
10	a)	Interpret the encoder for a convolution code is shown below:			
		M1 M2 M3	L3	CO4	7 M
		Find the code word for a 1010 input data			
	1 \	and draw the trellis diagram			
	(b)	Describe a syndrome calculator for a $(7, 4)$ cyclic code generated by the polynomial $g(x) = x^3 + x + 1$. Calculate the syndrome for the received code vector 100101.	L2	CO4	7 M